on energy decay of an n-dimensional thermoelasticity system with a nonlinear weak damping

نویسندگان

f. tahamtani

چکیده

we study the exponential decay of global solution for an n-dimensional thermo-elasticity systemin a bounded domain of ℜn . by using the multiplier technique and constructing an energy functional welladapted to the system, the exponential decay is proved.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy decay to Timoshenko's system with thermoelasticity of type III

L.H. Fatori a,∗, J.E. Muñoz Rivera b and R. Nunes Monteiro a a Department of Mathematics, Universidade Estadual de Londrina, Campus Universitário, Londrina, CEP 86.051-990, Paraná, Brazil E-mails: [email protected], [email protected] b National Laboratory of Scientific Computations, LNCC/MCT, Rua Getúlio Vargas 333, Quitandinha, Petrópolis, CEP 25651-070, RJ, Brazil and Instituto...

متن کامل

Uniform Stabilization of the Higher Dimensional System of Thermoelasticity with a Nonlinear Boundary Feedback

Using multipler techniques and Lyapunov methods, we derive explicit decay rates for the energy in the higher-dimensional system of thermoelasticity with a nonlinear velocity feedback on part of the boundary of a thermoelastic body, which is clamped along the rest of its boundary.

متن کامل

Exponential energy decay and blow-up of solutions for a system of nonlinear viscoelastic wave equations with strong damping

with initial and Dirichlet boundary conditions. We prove that, under suitable assumptions on the functions gi, fi (i = 1, 2) and certain initial data in the stable set, the decay rate of the solution energy is exponential. Conversely, for certain initial data in the unstable set, there are solutions with positive initial energy that blow up in finite time. 2000 Mathematics Subject Classificatio...

متن کامل

On (non-)exponential decay in generalized thermoelasticity with two temperatures

We study solutions for the one-dimensional problem of the Green-Lindsay and the Lord-Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green-Lindsay model, but the nonexponential stability for the Lord-Shulman model.

متن کامل

Periodic Damping Gives Polynomial Energy Decay

Let u solve the damped Klein–Gordon equation ( ∂ t − ∑ ∂ xj +m Id +γ(x)∂t ) u = 0 on R with m > 0 and γ ≥ 0 bounded below on a 2πZ-invariant open set by a positive constant. We show that the energy of a solution decays at a polynomial rate. This is proved via a periodic observability estimate on R.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 32

شماره 1 2008

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023